Статьи

Гетероструктурные солнечные батареи HEVEL HJT: история технологии, предварительный обзор и сравнение с мировыми аналогами

Сизов Павел Васильевич

Технический директор


Образование: Чувашский Государственный Университет

им. И.Н. Ульянова, ЭТ факультет, специальность "Электропривод и автоматика промышленных установок и технологических комплексов"


Академическая степень: магистр техники и технологии


Опыт работы: более 8 лет

Обладатель звания "Лучший выпускник ЧГУ 2011 года"



Итак, первое, что нам необходимо сделать, это определиться с формулировками, а точнее с сокращенным обозначением данной технологии. В развернутом виде наименование ее звучит как «Heterojunction with intrinsic thin-layer technology» - буквально «технология гетероперехода с внутренними тонкими пленками». Под упомянутыми «тонкими пленками»Мужчина на фоне Panasonic HIT подразумеваются тонкие пленки аморфного кремния. Созвучно самой технологии принято называть и солнечные модули – «гетеропереходные» (в России с подачи разработчика и производителя больше прижилось название «гетероструктурные», которое мы и будем использовать далее). Довольно редко и в самом обобщенном виде можно встретить такое понятие как «гетерогенные» солнечные батареи, но пользоваться им вследствие нераспространенности данного термина применительно к данной тематике мы не будем. Внимательно рассмотрев различие в аббревиатурах, которые приняли для обозначения данной технологии различные производители, можно заключить, что у компании Panasonic (которая поглотила изначального разработчика – компанию SANYO) аббревиатура HIT складывается из следующих заглавных букв общего названия «Heterojunction with Intrinsic Thin-layer technology» (гетеропереход с интегрированными тонкими пленками), а у компании «Хевел» (Hevel) аббревиатура HJT – из «HeteroJunction with intrinsic thin-layer Technology» (технология гетероперехода). Это сделано в первую очередь потому, что соответствующие технологии и товарные знаки запатентованы своими разработчиками. Нам же это не даст запутаться в терминах – далее при упоминании технологии компании SANYO/Panasonic используем аббревиатуру HIT, компании «Хевел» - HJT, без обозначения соответствующего знака правовой охраны товарного знака ® (в виде HIT®).


Рассматривать в деталях тонкопленочные микроморфные солнечные модули Hevel мы не будем, так как продукт это не новый, и со всеми характеристиками можно ознакомиться в общедоступных источниках, в том числе на нашем сайте. На технологииМикроморфный модуль Hevel аморфных солнечных модулей подробно мы не останавливаемся по следующим причинам: во-первых, данную информацию можно свободно найти на просторах интернета и, во-вторых, данный тип солнечных батарей с момента своего появления так и не получил широкого распространения, кроме того, подавляющее большинство производителей не ведут исследований в данном направлении и на сегодняшний день мы считаем данный продукт постепенно вытесняемым с рынка новыми, более перспективными решениями. Гетероструктурная технология, напротив, является абсолютной новинкой для российского рынка, так как ранее модули, выполненные на основе гетероперехода, на территории России не производились и не продавались. В целом достоин внимания тот факт, что в мире немногие компании производят солнечные модули по данной технологии, и, таким образом, компания «Хевел» в настоящее время входит в ТОП-3 мировых производителей HJT (HIT) модулей.


Остановимся подробнее на истории разработки и выхода на рынок HIT-технологии от пионера в области разработки солнечных батарей на основе аморфных пленок - компании SANYO, которая начала этот путь еще в далеком 1975 году. Отметим, что гетероструктурные солнечные модули SANYO HIT изготовлены из монокристаллических кремниевых пластин с нанесенными на них с обеих сторон чрезвычайно тонкими слоями аморфного кремния. Глубоко не вдаваясь в технические тонкости, вкратце выразим ключевую особенность HIT-технологии, обусловливающую новизну данного решения: благодаря покрытию пластин кристаллического кремния тонкими пленками аморфного кремния, в кристалле, вследствие снижения рекомбинационных центров на поверхности, ощутимо возрастает продолжительность жизни зарядов; как результат, повышается эффективность преобразования солнечного света, так как именно потерями носителей заряда на поверхности кремниевой пластины ограничен КПД традиционных солнечных элементов (см. рисунок). Необходимо добавить, что срок патентной защиты фирмы Sanyo Electric Co. Ltd. на данную технологию истек 8 августа 2011 года, и, с того момента, как патент перестал защищать своего правообладателя, другие компании-производители солнечных батарей, такие как «Хевел», получили возможность работать над дальнейшим развитием и улучшением данного способа производства солнечных ячеек.


Основные вехи развития HIT-технологии от тандема компаний SANYO/Panasonic:

  • 1975: компания SANYO начала разработку солнечных ячеек из аморфного кремния

  • 1980: SANYO становится первым в мире производителем, выпускающим солнечные ячейки из аморфного кремния на коммерческой основе
  • 1997: гетеропереходные солнечные ячейки с внутренними «тонкими пленками» были внедрены SANYO в серийное производство и поступили на рынок под торговой маркой HIT®. Поступление в продажу солнечных модулей мощностью 170 Вт. КПД ячейки 16,4%, КПД модуля 14,4%Гетероструктурный модуль Sanyo HIT-H2501998: поступление в продажу солнечных модулей мощностью 180 Вт. КПД ячейки 17,4%, КПД модуля 15,2%
  • 2002: поступление в продажу солнечных модулей мощностью 190 Вт. КПД ячейки 18,5%, КПД модуля 16,1%
  • 2003: SANYO выпускает на рынок модули мощностью 200 Вт с самым высоким в мире КПД
  • 2005: начало производства HIT-модулей SANYO на фабрике в Венгрии
  • 2007: SANYO преодолевает планку в 100 миллионов произведенных HIT-ячеек. В лаборатории достигнута эффективность ячеек в 22,3%. Расширение фабрики в Венгрии. Поступление в продажу солнечных модулей мощностью 215 Вт. КПД ячейки 19,3%, КПД модуля 17,2%
  • 2009: SANYO выпускает на европейский рынок высокоэффективные HIT-модули мощностью 220 Вт. Обладая КПД 17,4%, данные модули по-прежнему имеют самую высокую в мире эффективность
  • 2010: SANYO выпускает на европейский рынок высокоэффективные HIT-модули мощностью 235 Вт. Имея КПД 18,6%, модули остаются самыми эффективными в мире

  • 2011: в феврале SANYO запускает производство модулей 240 Вт с КПД ячеек 21,6%. В октябре, благодаря наиболее высокой степени преобразования энергии с использованием HIT-технологии, команда токийского университета выиграла проходящий в Австралии престижный гоночный чемпионат мира среди автомобилей на солнечных батареях

  • 2012: в апреле происходит смена бренда выпускаемых солнечных модулей с SANYO на Panasonic. Изменения касаются только названия бренда – структура продаж и производственные мощности остаются без измененийГетероструктурные модули Panasonic HIT
  • 2014: новые, улучшенные модули мощностью 245 Вт выходят на рынок. В лаборатории достигнут новый мировой рекорд эффективности ячеек в 25,6%. Произведен 1 миллиард солнечных ячеек
  • 2015: на рынок поступают новые компактные модули мощностью 285 Вт
  • 2016: продление для европейского рынка гарантии на HIT-модули до 15 лет. В продажу поступают новые мощные модули с номиналами 295 и 330 Вт

  • 2017: отмечается 20-летие массового производства солнечных HIT-модулей. Продление гарантийного срока на европейском рынке на HIT-модули с 15 до 25 лет


Теперь более подробно рассмотрим историю HJT-технологии от отечественного производителя солнечных модулей – компании «Хевел» (завод в г. Новочебоксарск, Чувашская Республика), с упоминанием дополнительных подробностей в виде планов компании и полученных сертификатов:

  • 2014, октябрь: генеральный директор ГК «Хевел» сообщает, что на базе «НТЦ тонкопленочных технологий в энергетике при ФТИ им. А.Ф. Иоффе» (далее по тексту – «НТЦ Иоффе») ведется разработка и подготовка к серийному производству солнечных модулей нового типа, выполненных по технологии гетероперехода, преимуществами которой являются повышенный КПД и более стабильные электрические характеристики при работе в условиях высоких температур, при которых ощутимо падает эффективность стандартных кристаллических солнечных элементов. Было сообщено, что уже вскоре после начала исследований был достигнут КПД фотоэлементов порядка 16%, и группа исследователей ставит целью довести данный показатель в ближайшей перспективе не менее чем до 22%, тем самым приблизившись к лучшим мировым достижениям в данной областиИсследования в НТЦ Иоффе
  • 2014, декабрь: в «НТЦ Иоффе» на опытной технологической линии изготовлены промышленные прототипы гетероструктурных солнечных модулей по HJT-технологии на основе кристаллических кремниевых ячеек размером 156х156 мм. КПД полученных образцов составляет порядка 20%. Для дальнейшего роста производительности ведутся работы по отработке технологических процессов химической обработки поверхности пластин кристаллического кремния, режимов осаждения слоев аморфного кремния, изготовления контактной сетки
  • 2015, декабрь: специалистами «НТЦ Иоффе» достигнут КПД солнечных HJT-ячеек в 22%. Типовой КПД обычных кристаллических ячеек на этот момент составляет на 4-5% меньше
  • 2016, июль: «НТЦ Иоффе» был получен патент на собственную технологию изготовления гетероструктурных солнечных модулей (HJT). После модернизации конвейера на заводе «Хевел» в Новочебоксарске под выпуск нового продукта планируется рост производственных мощностей со 100 до 160 МВт в год. Промышленные образцы солнечных модулей показывают КПД 20,3%
  • 2016, ноябрь: исследователям «НТЦ Иоффе» удалось получить первый образец солнечного элемента по гетероструктурной технологии на кристаллическом кремнии толщиной 90 мкм. С данным результатом это самая тонкая в России ячейка солнечного модуля. Стандартная толщина такой ячейки в два раза выше – 180 мкм. На практике положительный эффект данного достижения выражается в экономии кремния при изготовлении солнечных модулей и снижении себестоимости производства кремниевых пластин на 20%
  • 2017, февраль: идет процесс поэтапного запуска основных систем модернизированной технологической линии с увеличенной почти вдвое производственной мощностью. Участок по изготовлению солнечных ячеек введен в эксплуатацию одним из первых. Участок по сборке солнечных ячеек в готовые модули проходит завершающий этап пуско-наладочных работ. Во время предварительного ввода в действие линии по изготовлению гетероструктурных солнечных модулей получена эффективность солнечных ячеек в 21,75%Завод "Хевел" вышел на проектную мощность
  • 2017, апрель: на заводе «Хевел» в г. Новочебоксарск начато производство гетероструктурных солнечных модулей по HJT-технологии с проектным годовым объемом выпуска 160 МВт. КПД ячейки составляет 22%, КПД модуля — не менее 20%
  • 2017, июнь: обсуждается возможность увеличения производственной мощности завода со 160 до 220 МВт в год
  • 2017, июль: получение сертификата на соответствие требованиям Технического регламента Таможенного союза «О безопасности низковольтного оборудования» (ТР ТС) дает возможность компании «Хевел» приступить к продаже новых модулей. Также пройдена добровольная сертификация фотоэлектрических модулей в АНО «Наносертифика» как продукция наноиндустрии.Сертификат Листок жизни Дополнительно, модули успешно прошли экологическую сертификацию и получили право на международно признанную экологическую маркировку «Листок жизни» (Vitality Leaf). Требования стандартов предусматривают улучшенные показатели коэффициента полезного действия модулей по сравнению с аналогами (не менее 17%), высокие показатели стабильности работы модулей (номинальная мощность модулей на протяжении первых 25 лет не снижается более чем на 20%), применение сырья и материалов, минимизирующих негативное воздействие модулей на окружающую среду и здоровье человека при их производстве и эксплуатации
  • 2017, август: по результатам проекта второго этапа модернизации, находящегося на стадии технико-экономического обоснования, планируется увеличение производственной мощности вплоть до 250 МВт в год. При текущих объемах производства продукция завода «Хевел» законтрактована на ближайшие пять лет. Обсуждаются планы по объему экспорта солнечных модулей, которые могут составить около 10% от общего объема производства
  • 2017, сентябрь: начаты работы по реализации второго этапа модернизации технологической линии завода в Новочебоксарске, в рамках которого мощность производственного комплекса будет увеличена со 160 до 250 МВт солнечных модулей в год. Данный этап расширения производства позволит начать выпуск односторонних и двусторонних гетероструктурных модулей из 72 солнечных ячеек, что даст возможность увеличить среднюю мощность модуля до 400 Вт и более. Планируемый срок окончания работ – к концу 2018 года. В Майминском районе Республики Алтай введена в эксплуатацию первая солнечная электростанция мощностью 20 МВт на модулях нового поколенияСтанция визуального контроля на заводе "Хевел"
  • 2017, октябрь: на заводе «Хевел» в Новочебоксарске в рамках промышленного производства сошла с конвейера первая партия гетероструктурных солнечных ячеек с эффективностью 22,7%. Планируется, что достигнутые успехи в связке с дальнейшей оптимизаций производственных процессов позволят стабильно выпускать солнечные элементы со средним КПД около 23%

  • 2018, январь: с момента старта производства в апреле 2017 года было произведено более 323 тысяч модулей общей мощностью 95,25 МВт, что позволило подтвердить годовую проектную мощность в 160 МВт после первого этапа модернизации. За полгода с начала производства солнечных модулей по новой технологии удалось на 25% увеличить производительность ключевого участка – плазмохимического осаждения. Кроме того, были улучшены рецепты нанесения слоев ITO, трафаретная печать, что в итоге позволило последовательно в течение года увеличивать КПД продукции. В результате к концу 2017 года средняя эффективность ячеек была увеличена с 20 до 22,8%, а мощность модулей из 60 ячеек в серийном производстве выросла с 280 до 310 Вт. Таким образом, оптимизация ряда технологических процессов на ключевых участках линии уже в декабре 2017 года позволила Сертификат TÜV Rheinlandпревысить проектные показатели на 10%
  • 2018, февраль: получен сертификат TÜV Rheinland (от независимой сторонней организации, аккредитованной для тестирования и сертификации фотоэлектрических систем и компонентов в соответствии с различными международными стандартами). Солнечные модули компании Хевел прошли испытания по стандартам МЭК (международного электротехнического комитета) IEC 61215 и IEC 61730. Получение сертификата свидетельствует об успешном прохождении различных испытаний на качество и безопасность в лаборатории TÜV в Германии
  • 2018, март: в «НТЦ Иоффе» пройдены испытания солнечных модулей Hevel в условиях экстремально низких температур (-60 °C), что открывает для них перспективу арктического применения. Начат экспорт солнечных панелей «Хевел» в ряд стран Европы и Азии. Согласно коммерческим условиям контрактов, страны-покупатели на данном этапе не разглашаются

Установка плазмохимического осаждения

Отметим, что главным новшеством, привнесенным российскими учеными в существовавшую ранее HIT-технологию, является следующее – операции диффузии и имплантации при создании p-n перехода были заменены технологической операцией осаждения нанопленок аморфного кремния поверх кристаллического кремния плазмохимическим методом.


Более или менее разобравшись с историей развития технологии на мировом и отечественном рынках, давайте перечислим преимущества модулей Hevel HJT (и в целом технологии гетероперехода) и сравним текущего «лидера» компании «Хевел» с самым мощным модулем линейки от компании Panasonic.


Как нам уже известно, гетероструктурная технология представляет собой гибрид кристаллического и тонкопленочного типов кремниевых солнечных элементов. В результате данной комбинации удается объединить основные плюсы кристаллических и тонкопленочных аморфных модулей, что выражается в получении следующих ключевых преимуществ:Гетероструктурные модули Hevel 310 Вт

  • более высокий КПД, чем у того или иного типа солнечных панелей в отдельности
  • медленная световая деградация с течением времени
  • более высокая эффективность при повышенных температурах эксплуатации, низкий температурный коэффициент мощности
  • лучшее восприятие рассеянного света, выше производительность в отсутствие прямых солнечных лучей
  • устойчивость к частичному затенению


Далее приведем сравнительную таблицу с характеристиками модулей Hevel HJT 310 Вт и Panasonic HIT 330 Вт.

Модель

HVL HJT 310

Panasonic HIT N330

Стоимость на мировом рынке (Великобритания, США), $

370-380

Процент брака на основании 10 лет работы в Европе, %

0,0035

Количество произведенных HIT ячеек (на январь 2017), млрд

1

Общие характеристики

Срок службы, не менее, лет

25

25

Падение мощности через 25 лет, не более, %

20

20

Технология ячеек

монокристаллическая пластина / гетеропереход аморфного кремния

монокристаллическая пластина / гетеропереход аморфного кремния

Количество ячеек, шт

60

96

Размер ячеек, мм

156,75 х 156,75

127 х 127

Клеммная коробка, степень защиты

IP67

IP67

Сечение кабеля, кв. мм.

4

3,31 (12 AWG)

Длина проводов, см

100

102

Тип коннекторов

MC4

MC4

Температура окружающей среды, °C

-40 ... +40

Размеры (Д х Ш х Т), мм

1671 х 1002 х 42

1590 х 1053 х 35

Вес, не более, кг

19

18,5

Площадь, кв. м.

1,675

1,674

Снеговая/ветровая нагрузка, Н/кв.м. (Па)

2400

2400

Электрические характеристики

Номинальная мощность (+ толеранс), Вт

310 (+ 5)

330 (+ 10)

Напряжение холостого хода, В

43,67

69,7

Ток короткого замыкания, А

9,35

6,07

Напряжение при максимальной мощности, В

35,22

58,0

Ток при максимальной мощности, А

8,69

5,70

КПД модуля, не менее, %

18,52

19,7

Коэффициент заполнения ВАХ

0,75

Встроенные байпасные диоды, шт.

3

4

Максимальное превышение тока, А

15

15

Максимальное напряжение в системе, В

1000

1000

Температурные характеристики

Температурный коэффициент номинальной мощности, %/°C

- 0,28

- 0,258

Температурный коэффициент напряжения холостого хода, %/°C

- 0,24

- 0,283

Температурный коэффициент тока короткого замыкания, %/°C

0,04

0,0586

Номинальная рабочая температура модуля, °C

38,8

44,0

Диапазон рабочей температуры модуля, °C

-40 ... +85

-40 ... +85


Из интересных моментов, кроме прочего, можно отметить следующее - несмотря на различное соотношение сторон, размер иЗавод Хевел г. Новочебоксарск количество ячеек, площадь модулей совпадает почти до тысячной доли квадратного метра. Таким образом, на сегодняшний день данное соотношение площади и мощности  можно считать неким промышленным стандартом для гетероструктурных модулей. Принимая во внимание такие факторы как ожидаемый в скором времени сход с конвейера завода «Хевел» солнечных панелей Hevel HJT мощностью уже 320 Вт и лидирующее положение модулей Panasonic в своей нише и в целом их наилучший среди серийно выпускаемых солнечных батарей температурный коэффициент, можно заключить, что солнечные модули Hevel в действительности приблизились по своим параметрам к лучшим мировым аналогам модулей на основе гетероперехода. В настоящее время практически вся выпускаемая заводом продукция поставляется для строительства больших сетевых солнечных электростанций, поставляющих энергию на оптовый рынок электроэнергии и мощности (ОРЭМ). Параллельно ведется работа по разработке политики розничных продаж и обоснованию цены, по которой модули смогут приобрести частные лица и организации для собственных нужд. Без сомнения, данные гетероструктурные солнечные батареи Hevel отечественного производства, обладающие весьма достойными характеристиками, сейчас являются одним из самых ожидаемых продуктов солнечной индустрии на российском рынке.Гетероструктурный модуль Hevel


С полным ассортиментом и характеристиками солнечных модулей Hevel Вы можете ознакомиться на нашем сайте в разделе «СОЛНЕЧНЫЕ БАТАРЕИ HEVEL (РОССИЯ)». В том числе там сразу же появятся цены на новые гетероструктурные панели HVL HJT, как только они поступят в продажу. Следите за соответствующим разделом на сайте, или оставьте контактные данные, и Вы узнаете о поступлении перспективной новинки одними из первых.

Светодиоды: сравнение технологий

Сизов Павел Васильевич

Технический директор


Образование: Чувашский Государственный Университет

им. И.Н. Ульянова, ЭТ факультет, специальность "Электропривод и автоматика промышленных установок и технологических комплексов"


Академическая степень: магистр техники и технологии


Опыт работы: более 6 лет

Обладатель звания "Лучший выпускник ЧГУ 2011 года"



Свет. Как много сказано этим словом. Он есть всюду, он необходим для жизни. Не будет преувеличением сказать, что если не было бы света – не было бы жизни. У каждого из нас дома есть источники света. Как правило, это лампы накаливания. Но прошло время, когда никто не задумывался об их энергопотреблении. Если произвести элементарный подсчет, то примерная доля месячного энергопотребления, приходящаяся на освещение среднестатистической квартиры (в случае использования ламп накаливания), составит примерно от одной четверти до одной трети от общего объема платежа за электричество. Это не так уж и мало. Холодильник с высоким классом энергоэффективности (класса А и выше) будет потреблять и того меньше, несмотря на то, что подключен к сети круглосуточно. Вероятно, вы весьма удивитесь, насколько можно уменьшить сумму ежемесячного платежа за электроэнергию, если разом заменить все лампочки «ильича» на светодиодные. Безусловно, это требует определенного стартового финансового вложения, но с лихвой окупается тем, что впоследствии на протяжении долгих лет вы будете экономить электроэнергию и забудете, что значит подставлять стульчик под люстру для замены лампочки (что, кстати, формально требует участия квалифицированного электрика, как бы удивительно это ни звучало для российского обывателя).


Всем нам важно понять, что так называемые лампочки «ильича», эти милые нашему сердцу лампочки с желтым свечением, знакомые каждому, уж больно много «кушают», и в плане энергопотребления сильно бьют по семейному бюджету. Есть простой факт, который наверняка заставит вас задуматься об их экономичности – менее 15% всей потребляемой ими энергии превращается в видимый свет, остальная энергия преобразуется в тепловое излучение. Таким образом, это больше «батарея», чем источник света. При переходе на другие типы ламп многих отталкивает то, что цвет свечения других ламп непривычного белого света. Эти люди, видимо, просто не знают всей правды – легко можно подобрать лампочку требуемой цветовой температуры, в том числе такую, которая будет излучать свет привычного желтого оттенка. Не вдаваясь в технические тонкости, примем во внимание, что от цветовой температуры и зависит оттенок излучаемого света, который для широкого потребления обычно подразделяют на теплый белый (порядка 2700-3000К), нейтральный белый (4000-5000К) и холодный белый (6000К и выше). Все мы привыкли к желтому свечению ламп накаливания и считаем его чуть ли не истинным, природным цветом свечения. Между тем это глубоко ошибочное мнение. Например, цветовая температура видимого нами дневного света, в случае солнца в полдень, составляет около 5000К. Многие называют белый свет новомодных ламп мертвенно-бледным, «больничным» светом, не осознавая, что он намного ближе к естественному солнечному и предметы при таком освещении обладают намного более лучшей цветопередачей. К тому же оттенок освещения – всего лишь дело привычки. Если вы привыкли к желтому оттенку свечения, то также привыкнете и к белому. И тем более никто не принуждает покупать себе лампочки именно с белым оттенком свечения – для спален и комнат отдыха вполне могут быть уместными и лампы привычного желтого свечения. При выборе также следует иметь в виду, что лампы теплого и нейтрального/холодного белого света при одинаковой мощности имеют различную яркость (световой поток) – лампы более холодных тонов всегда и ощутимо ярче. В офисах, рабочих кабинетах, производственных помещениях и других зонах, используемых для выполнения какой-либо работы и несущих определенное функциональное назначение делового порядка, более уместным и даже предпочтительным является белый свет. Ведь недаром в офисных и торговых помещениях в подавляющем большинстве случаев мы видим именно этот свет. Итак, мы усвоили, что теплый свет – расслабляющий свет, свет «отдыха», а холодный свет – тонизирующий свет, свет «для работы».


В противопоставление неэкономичным лампам накаливания вы наверняка упомянете про так называемые энергосберегающие лампочки. Что они из себя представляют? В общем случае, энергосберегающие лампы – это люминесцентные лампы (КЛЛ – компактные люминесцентные лампы), а свет в них образуется путем прохождения излучения горящего газа через слой люминофора. Но перейдем от теории к практике. При аналогичном световом потоке такие лампы потребляют примерно в 5 раз меньше электроэнергии, чем лампы «ильича». Это их основное преимущество. Что касается их долговечности, то на деле она практически никогда не достигает заявленной – в первую очередь это происходит потому, что мы не привыкли ограничивать себя в количестве и частоте включений-выключений люстр, настольных ламп и прочих источников света. Еще одним их недостатком, который не стоит сбрасывать со счетов, является необходимость в их утилизации специальными организациями с помощью так называемых демеркуризационных установок. Обусловлено это тем, что они содержат пары ртути, которые даже в малых концентрациях очень опасны для здоровья человека. Все мы знаем, как опасна ртуть – у всех у нас были или есть ртутные градусники. К сожалению, многие люди не задумываются об этом и выбрасывают эти лампы в обычные мусорные урны, на помойку. Ртути в КЛЛ, конечно, не так много, как в градусниках – на порядки меньше – но, согласитесь, однозначно лучше, когда ее совсем нет :)


Исходя из вышесказанного, вместо заявленных 8-12 тыс. часов работы энергосберегающих ламп мы имеем на практике обычно никак не более 5 тыс. часов, а то и меньше, в зависимости от частоты включения и качества самой лампы и добросовестности производителя. Зачастую энергосберегающие лампы, перед тем как выйти из строя, при включении разгораются все дольше и дольше, в первый момент излучая совсем слабое свечение. И это не может не раздражать. В качестве примера могу привести свой собственный. Люминесцентная лампа с цоколем Е27, которую я установил в светильнике в прихожей (коридор между подъездом и квартирой), находится уже на последнем «издыхании». И проработала она уж никак не 8-12 тыс. часов и даже не 5 тыс. Связано это с тем, что она довольно-таки часто включается и выключается в силу специфики места своего расположения.


Впоследствии мы не будем называть люминесцентные лампы энергосберегающими, т.к. это было бы неправильным – а чем светодиодные лампы не энергосберегающие? Ведь, по сравнению даже с теми же люминесцентными, они еще какие энергосберегающие. Поэтому лампочки «ильича» будем называть лампами накаливания, т.н. энергосберегающие лампы – люминесцентными, ну а светодиодные лампы – светодиодными :)


Сразу же отметим, что светодиодные лампы лишены всех вышеперечисленных недостатков. В теорию вдаваться нет смысла, и для общего развития достаточно знать, что светодиод – это полупроводник, излучающий свет при пропускании через него электрического тока. Что еще следует знать о светодиодных лампах и светильниках? А вот то основное, что следовало бы знать, не касаясь глубоких технических аспектов:

- они экономичнее ламп накаливания в среднем от 8 до 10 раз и экономичнее люминесцентных ламп в 2-2,5 раза;

- они долговечнее ламп накаливания до 100 раз и долговечнее люминесцентных ламп до 5 и более раз;

- высокая прочность и стойкость к механическим воздействиям;

- умеренный нагрев в процессе работы и, как следствие, повышенная пожаробезопасность;

- при работе отсутствует шум, мерцание, ультрафиолетовое излучение;

- не содержат вредных веществ, требующих специальной утилизации.

Естественно, возникает вопрос: если со светодиодными лампами все так прекрасно и они обладают одними только неоспоримыми преимуществами перед другими типами ламп, то почему до сих пор на каждом шагу не внедрены именно эти лампы? Почему у каждого из нас дома в люстрах не установлены именно светодиодные лампы? Основных причин этому две. Первая – это то, что об этих лампах, как это ни удивительно, известно до сих пор не всем - не успели еще люди перейти на люминесцентные лампы, как уже появились светодиодные. Вторая причина – это их стоимость. Цена светодиодных ламп, надо признать, все еще «кусается». И опять же здесь многое зависит от поставщика и от производителя. Светодиодная лампа для дома с цоколем Е27 или E14 может стоить и 150 рублей, и 500 рублей, и больше. Откуда такая разница? Конечно, в первую очередь это определяется мощностью лампы и «именитостью» производителя - именитые производители стараются снабжать свои изделия качественными комплектующими и это заметно отражается на цене. Как правило, для дома достаточно светодиодных ламп мощностью от 7 до 12 Вт, которые успешно заменяют лампы накаливания мощностью 60, 75 и 100 Вт, а также люминесцентные лампы мощностью 11, 13, 15 и 20 Вт. Также цена зависит от форм-факторы лампы, а из основных это может быть «шар», «груша», «свеча» или «кукуруза». Цены на лампы типа «шар» и «груша» сравнимы, а вот «кукурузы» стоят, в большинстве случаев, дороже. Связано это с тем, что «кукурузы» по направленности свечения максимально близки к лампам накаливания, т.к. излучают свет во все стороны, в то время как «шар» и «груша» имеют рассеиватель в виде полусферы или урезанной сферы. Есть также и еще более «новомодные», максимально стилизованные под старые добрые лампы накаливания лампы с нитевидными светодиодами, т.н. LED Filament. Нитевидные светодиоды в таких лампах заключены в прозрачные колбы, и, отойдя на несколько шагов, при работе их не отличить от лампочек «ильича» (при условии, конечно, исполнения с теплым белым светом).


С отличиями и преимуществами светодиодных ламп и светильников, вкратце, мы разобрались, теперь разберем пару примеров простеньких расчетов окупаемости данных источников света. Итак, сначала определимся с тем, что же такое есть окупаемость. Согласно определению, окупаемость – это минимальный срок, за который накопленный доход от полученной прибыли соответствует начальным инвестициям. Иными словами – это время, за которое светодиодный светильник сэкономит вам вложенную в него сумму денег.


Пример 1. Домашний быт. Для упрощения расчета примем, что у вас дома в течение всего года ежедневно на 4 часа включается 5 ламп накаливания мощностью 95 Вт каждая. Стоимость одного кВт*ч для населения, проживающего в городских населенных пунктах в домах, не оборудованных стационарными электроплитами и (или) электроотопительными установками, составляет 2 руб 98 коп (Чувашская Республика). Пусть рост тарифов составит 10% в год. Средняя стоимость лампы накаливания 95 Вт – 15 рублей. Средняя стоимость светодиодной лампы 12 Вт – 150 рублей. По уровню освещенности светодиодная лампа 12 Вт замещает собой лампу накаливания 95 Вт.


Итак, вы купили светодиодные лампы и заменили ими лампы накаливания. Теперь внимание – результаты расчета. Вы можете удивиться, но в данном примере вложенные в покупку новых ламп деньги «отобьются» в течение всего 5 месяцев! А если вы к тому же, скажем, «сова», любите поздно ложиться спать и свет у вас горит по 6 часов в день – то и вовсе менее чем за 3,5 месяца! Возвращаясь к исходным данным, скажем, что через 2 года за счет экономии на электроэнергии потраченные деньги (5 х 150 = 750 руб) окупятся 5 раз, а через 5 лет – почти 15 раз. Чтобы «усилить» произведенный эффект, дадим следующие цифры: за 10 лет ваши лампы накаливания мощностью 95 Вт «нажгли» бы электричества почти на 33 тыс. руб. (без учета стоимости их замены при перегорании), а светодиодные мощностью 12 Вт – всего около 4 тыс. руб. Чувствуете разницу? Да, мы, а также все те, кто уже применяет в быту светодиодные лампы, тоже давно видят эту разницу в своих квитанциях на оплату коммунальных услуг. И даже в случае если светодиодная лампа не прослужит заявленный срок службы (а такое вполне может случиться для относительно дешевых ламп), то и за 2-3 года работы она многократно себя окупит. Замена ламп накаливания светодиодными является, пожалуй, самым выгодным и быстро окупаемым вложением денег в домашнем хозяйстве. Заменять надо, и быстро – тут и думать нечего :). Иначе получается, что вы «прожигаете» свои деньги впустую. Надеемся, что смогли вас убедить. Кроме того, помните, что в 2016 году в Минэнерго уже поднят вопрос запрета ламп накаливания мощностью свыше 60 Вт, так что путь в любом случае только один – переход на более экономичные источники света.


Пример 2. Коммерческий сектор. Самым распространенным типом расчета окупаемости светодиодных светильников в коммерческой сфере является, пожалуй, вычисление выгоды от применения светодиодных офисных светильников взамен люминесцентных. И, конечно же, самым распространенным типом потолка для офисов и торговых площадей является потолок типа «Армстронг» с размером ячейки 60х60 см. Или пусть это будет гипсокартонный потолок или типа «Грильято» - суть от этого совершенно не меняется. Допустим, что есть строящийся гипермаркет с 12-часовым режимом работы ежедневно в течение всего года и с требуемым количеством светильников в 1000 штук и руководство решает, какие светильники установить – люминесцентные старого образца или новые светодиодные. Потребление люминесцентного светильника с электронным блоком ПРА (пускорегулирующей аппаратуры) составит 80 Вт, а светодиодного аналога – 32 Вт. Стоимость одного кВт*ч для коммерческой организации по ценам 2016-го года примем в размере 4 руб 50 коп (Чувашская Республика). Пусть рост тарифов составит 10% в год. Стоимость более или менее качественного люминесцентного светильника 80 Вт – 1000 рублей, светодиодного 32 Вт – 2000 рублей. По уровню освещенности такой светодиодный светильник замещает собой люминесцентный.


Итак, переходя к результатам, сразу скажем, что экономия, опять же, потрясающая. Полная окупаемость стоимости покупки светодиодных светильников за счет экономии на электроэнергии составит около 1 года 10 месяцев. А разница в стоимости между светодиодными и люминесцентными светильниками окупится и вовсе менее чем через 1 год! Через 7 лет работы светодиодные светильники окупят себя 5 раз. Абсолютные цифры поражают еще больше – через 10 лет экономия на счетах за электричество для магазина составит более 16,5 млн. руб! На самом же деле окупаемость в сравнении с люминесцентными светильниками наступает еще быстрее, т.к. необходимо учитывать и дополнительные факторы:

- стоимость подключения 1 кВт дополнительной энергомощности;

- экономию на кабелях и защитных устройствах (меньшие номиналы по току для защитных устройств, меньшее сечение кабелей, отсутствие пусковой и реактивной мощности);

- затраты на ежегодное обслуживание люминесцентных светильников (замена ламп, зарплата электрика и пр.).


Теперь вы наверняка знаете, насколько выгоднее использовать светодиодные источники освещения по сравнению с традиционными – лампами накаливания и люминисцентными светильниками. Поспорить со светодиодными по энергоэффективности из распространенных типов ламп могут, пожалуй, только металлогалогенные лампы, но и они обладают рядом недостатков – в частности, они тоже недешевы и требуют пускорегулирующей аппаратуры. Здесь мы их не рассматриваем, т.к. у них довольно узкая ниша на рынке. Так называемые «плазменные» или СВЧ-светильники пока еще не получили широкого распространения, поэтому пока на них останавливаться также не будем. Оставайтесь с нами, будем рады делиться с вами новой информацией.

Светодиоды: краткий обзор рынка


Сизов Павел Васильевич

Технический директор


Образование: Чувашский Государственный Университет

им. И.Н. Ульянова, ЭТ факультет, специальность "Электропривод и автоматика промышленных установок и технологических комплексов"


Академическая степень: магистр техники и технологии


Опыт работы: более 5 лет

Обладатель звания "Лучший выпускник ЧГУ 2011 года"



Прошло немало времени с момента публикации предыдущей статьи, и тому было несколько причин, главная из которых – желание наших специалистов набраться большего опыта в таком относительно молодом, но стремительно развивающемся направлении рынка, как светодиодное освещение. И, надо признаться, собралось немало полезной информации, которой мы бы хотели с вами поделиться.


Начать, пожалуй, следует с того, что цены на светодиодную продукцию ожидаемо падают, и падают с ощутимой скоростью, что не может не радовать как нашу компанию, так и кошелек конечного потребителя, ведь это способствует все более широкому распространению такой замечательной и перспективной технологии. И есть надежда, что более 10 млн. офисных люминесцентных светильников, ежегодно продаваемых на территории России, в ближайшее время превратятся в миллионы светодиодных. Если представить ситуацию, когда половина этого объема светильников будет заменена на светодиодные, то получим экономию мощности, в цифрах равную порядка 250 МВт, что сопоставимо, например, с электрической мощностью Абаканской ТЭЦ или типовой мощностью энергоблока АЭС. Преимущества светодиодной технологии очевидны: это и гораздо большая экономичность, и их «долголетие». Пока что светодиодные светильники являются чемпионами по продолжительности жизненного цикла. Чемпионы они в сравнении с лампами накаливания и КЛЛ и по всем остальным параметрам. Не устраивает нас всех только то, что чемпионы они также и по своей стоимости. Да, действительно, еще недавно разрыв в стоимости был ужасно велик, но сейчас ситуация в корне меняется. На день публикации статьи уже можно купить светильник под «армстронг» в пределах 1500 рублей, а 7 Вт лампочку для дома в пределах 150 рублей. И это притом, что соответствующие люминесцентные аналоги высокого качества обойдутся в 800-1200 рублей и 125-175 рублей ориентировочно. Учитывая все остальные преимущества светодиодов, можно сказать, что люминесцентные лампы ожидает если и не полный уход с рынка в ближайшее время, то значительное сокращение их доли. Конечно, есть определенные сферы применения, где их использование в некоторых случаях оправдано – например, в растениеводстве и при выращивании грибов, в некоторых животноводческих комплексах, при разведении рыб в промышленных масштабах и в частных аквариумах и т.д. При этом стоит оговориться, что светодиоды весьма успешно теснят все прочие светильники и на этих фронтах. Резюмируя, с уверенностью можно сказать, что в подавляющем большинстве случаев современный руководитель и домовладелец, шагающий в ногу со временем и владеющий информацией о текущих мировых тенденциях в сфере энергосбережения, несомненно, предпочтет для использования именно светодиодные технологии освещения.


Разумеется, неправильным было бы все многообразие типов светильников и все направления применения светодиодных источников света смешивать в одну кучу. Во избежание этого давайте выделим следующие основные направления применения: офисное и торговое освещение, промышленное освещение, уличное освещение и домашнее освещение. Можно выделить отдельно и освещение для ЖКХ. Каждое направление, учитывая многообразие различных нюансов, представляет собой тему для отдельной статьи, и мы постараемся поговорить о них впоследствии подробнее. Забегая вперед, можно сказать, что наиболее экономически обоснованным в массовых сферах является применение светодиодных светильников в торговой индустрии, особенно в крупных гипермаркетах, где энергозатраты на освещение торговых залов очень велики, а время ежедневной работы светильников составляет, как правило, не менее 12 часов. При таких условиях срок окупаемости зачастую составляет менее 1,5-2 лет. Более выгодным может быть только случай круглосуточной работы светильников. В качестве примеров круглосуточной работы светильников можно назвать следующие направления:

- адаптационное освещение в тоннелях метрополитена;

- освещение общественных мест, таких как зоны ресепшн, вестибюли, некоторые коридоры и лестницы.


Что касается «родословной», то здесь не стоит удивляться, что многие произведенные светодиодные источники света, продающиеся на российском рынке, имеют китайское происхождение. С одной стороны – ценовой - это конечно, хорошо, но, с другой стороны, не всякое китайское изделие обладает надлежащим уровнем качества. Но и пугаться самой фразы «made in China» тоже не стоит. «Китай», если можно так выразиться, бывает «фабричным», а бывает «безымянным», что означает «noname». Вот производителей второго типа и стоит опасаться. Купить такой продукт означает купить «кота в мешке» - может он прослужит вам верой и правдой долго и безотказно, а может и месяца не протянет. Фабричный же «китай» имеет свою торговую марку и старается по мере сил поддерживать ее доброе имя, и, следовательно, соблюдать возложенные на себя гарантийные обязательства, ибо репутация для крупного производителя дороже замены бракованной или вышедшей из строя до окончания гарантийного срока продукции. Соответственно, и качество такого товара отличается в лучшую сторону. В качестве примера можно привести рынок китайских смартфонов – многие мои, да и, наверняка, ваши тоже, знакомые заказывают с Китая через торговые интернет-площадки навороченные смартфоны, по характеристикам и потребительским качествам ничуть не уступающие, а в некоторых случаях и превосходящие своих именитых «братьев», при этом цена на такие устройства, как правило, ниже в 1,5-2 раза. Сами светодиоды и сопутствующее оборудование в Китае по ценам, конечно, не отличаются от российских в разы, но вот на рабочую силу это правило распространяется – она в «поднебесной» очень дешева по мировым и даже отечественным стандартам. Вообще же применительно к светотехнической продукции китайского производства можно сказать следующее – не стоит опасаться, что каждый ввозимый из Китая товар обязательно окажется сомнительного качества, особенно если вы тщательно подошли к вопросу выбора производителя.


В немалой степени такому заполонению российского рынка китайской продукцией способствуют сами потребители в погоне за самой низкой ценой. В чем в чем а уж в стоимости продукции из поднебесной пока нет равных. Препятствием для полного поглощения рынка китайской продукцией могут служить разве что длительные сроки поставки продукции, т.к., если товара нет в наличии на складе у продавца, то время прихода новой партии может составить до 2-4 месяцев. Здесь надо иметь ввиду, что компании-импортеры заказывают, конечно же, не одну позицию товара, и приходится дополнительно ждать, пока наберется заявка минимально необходимого объема.


Даже если вы видите на изделии гордую надпись «сделано в России» - это вовсе не означает, что все составляющие компоненты произведены в России. У подавляющего большинства российских производителей используются компоненты зарубежного происхождения, и в первую очередь это касается самих светодиодов и электронных компонентов для драйверов. В самой же России одними из самых известных заводов-производителей светодиодов являются, пожалуй, компании «Светлана-Оптоэлектроника» (г. Санкт-Петербург) и АО «Протон» (г. Орел). Прискорбный, но вполне вероятный факт – это то, что все отечественные компании-производители схожего профиля можно пересчитать по пальцам рук. Но, что еще печальнее, судя по всему, продукция отечественных производителей пока не может конкурировать по конечной стоимости, а зачастую и потребительским характеристикам, с изделиями ведущих мировых производителей. И обусловлено это в первую очередь соотношением масштабов производств и объемами выпускаемой продукции.


Одними из крупнейших в мире производителей светодиодов, по крайней мере, встречающихся потребителям на российском рынке, являются: Samsung, Nichia, Cree, Bridgelux, SemiLEDS, Seoul Semiconductor, Epistar, Osram. На наш скромный взгляд, принципиально технологический уровень всех перечисленных производителей в допустимой степени сравним, что означает, что никакая компания в одиночку не может в течение длительного времени обладать какой-либо эксклюзивной технологией, дающей абсолютное лидерство на рынке.


Все вышеперечисленное позволяет сделать вывод, что при выборе товара в первую очередь стоит опираться не на марку применяемых светодиодов, а на заявленные производителем потребительские характеристики и гарантийные обязательства, поскольку определить «на глазок» качество светодиодов неподготовленному человеку все равно не представляется возможным. Вот тут-то и может скрываться подвох, ведь на глаз световой поток не измеришь, ну и тем более ожидаемое время наработки на отказ. В конечном итоге во многом приходится положиться на слова продавца, но это уже вопрос доверия. Покупая товар как частное лицо, редко кто спрашивает полный комплект документов, включая сертификаты на продаваемую продукцию. При покупке крупной партии товара, или представляя организацию, настоятельно рекомендуем это делать. Уточняя марку применяемых в светильниках светодиодов, можете поинтересоваться и поколением выпуска светодиодов – ведь с каждым последующим поколением растет светоотдача кристалла на каждый ватт потребляемой мощности (измеряется в Люмен на Ватт – Лм/Вт – больше 100 Лм/Вт являются весьма неплохим показателем, но главное, чтобы он не достигался завышением рабочего тока светодиодов, что ведет к повышению температуры работы и ускоренной деградации кристалла), и, соответственно, изделие становится еще более экономичным при сохранении или даже увеличении выходного светового потока. При совершении покупки главное прийти к соглашению с самим собой в ценовом вопросе, ведь лучшее не может быть дешевым, и мудрость «скупой платит дважды» здесь вполне уместна.


Также хотелось бы отметить, что сейчас, когда на дворе 2015 год, в условиях нестабильности в экономике, после безудержного и все продолжающегося роста курса валют, начавшегося осенью 2014-го, можно ожидать (хотя процесс итак уже давно идет) и дальнейшего роста цен на светодиодные источники освещения, как, впрочем, и на все остальные импортируемые в Россию товары. Тем не менее, вопрос об окупаемости светодиодных светильников в сравнении с традиционными по-прежнему не стоит – это однозначно выгодное вложение денег. Обзорное сравнение технологий традиционного и светодиодного освещения, а также примеры расчета окупаемости рассмотрим в одной из последующих статей.

Возобновляемые источники энергии: время пришло?


Сизов Павел Васильевич

Технический директор


Образование: Чувашский Государственный Университет

им. И.Н. Ульянова, ЭТ факультет, специальность "Электропривод и автоматика промышленных установок и технологических комплексов"


Академическая степень: магистр техники и технологии


Опыт работы: более 3 лет

Обладатель звания "Лучший выпускник ЧГУ 2011 года"



Не секрет, что в последнее время у многих на слуху такие ставшие модными понятия, как «возобновляемые источники энергии», «энергоэффективные технологии» и «светодиодные источники освещения». Давайте разберемся, что же это такое. Первое, что приходит на ум почти каждому при упоминании возобновляемых источников энергии (ВИЭ) – это, конечно же, фотоэлектрические модули, более привычные нам всем как солнечные батареи, и ветроэлектрические установки (ветрогенераторы). Название их говорит само за себя – первые поглощают и преобразуют в электричество солнечное излучение (а точнее, только часть его, к сожалению), а вторые питают лампочки в наших домах с помощью энергии ветра. Здесь можно было бы упомянуть и другие типы ВИЭ, такие как энергия приливов и отливов, энергия геотермальных источников, тепловая энергия недр земли, энергия биомассы (в первую очередь имеется в виду энергия, полученная в результате сжигания отходов животноводческих ферм) и пр., но в рамках данной статьи мы не будем подробно на них останавливаться, поскольку эти источники подразумевают, как правило, постройку какой-никакой, а уже целой электростанции, что в наши планы – планы владельцев приусадебных участков, дач и загородных домов – конечно же не входит. Не говоря уже о том, что даже солнечные батареи, такой, казалось бы, давно освоенный и повсеместно применяемый в развитых странах источник экологически чистой энергии, в сознании большинства граждан нашей необъятной страны представляются чем-то экзотическим и могут быть описаны короткой и емкой фразой из разряда «придумают же люди!» :)


Почему так сложилось? Казалось бы, ответ лежит на поверхности и известен чуть ли не каждому школьнику младших классов – потому что государство избаловано огромными запасами ископаемых веществ, которые мы привыкли измерять в баррелях и кубометрах. Только ли в этом причина? И да, и нет. Точнее, это только половина правды. Вторая половина заключается в менталитете – как государства, так и конкретно взятого русского человека. Дело в том, что в России не привыкли платить заранее. Русский человек не выложит кругленькую сумму за то, что окупится и начнет приносить прибыль только через n-ое количество лет. Нужно все и сразу. Если здесь вы узнали себя, то, к сожалению, возобновляемые источники энергии – это не для вас, и остальные доводы, такие как экологичность и долгий срок службы, уже не имеют смысла.


Но вернемся к главному – какие из «зеленых» технологий достигли рентабельности для применения в частном хозяйстве на сегодняшний день? Ответ на этот вопрос неоднозначен – многое зависит от географического местоположения и погодных условий. Например, применение «ветряков» считается целесообразным только при среднегодовой скорости ветра более 4 м/с – далеко не каждый российский регион может «похвастаться» такими значениями скорости ветра. Еще одним ограничивающим фактором является то, что мощность ветрогенератора находится в кубической зависимости от скорости ветра, т.е. если у вас в месте установки «ветряка» скорость ветра в 2 раза меньше номинальной паспортной, то выработка электроэнергии теоретически уменьшается в 8 раз. Именно эти факторы и являются причиной разочарования многих владельцев ветроэнергетических установок, которые не были заранее предупреждены о таких «мелочах» недобросовестными продавцами, ставящими целью только получение прибыли.


С солнечными батареями дела обстоят получше – в солнечный летний день они исправно вырабатывают мощность, близкую к номинальной, а в зимние дни выработка может уменьшаться, как показывает практика, в 4-6 раз. Не следует забывать о том, что если вы хотите получить в свое распоряжение действительно автономную систему энергоснабжения, то вам следует «запастись» большим количеством накопителей энергии – аккумуляторов, и это очень важный момент, т.к. в автономной системе они составляют, как правило, около половины стоимости всего оборудования, а срок их службы напрямую зависит от степени их разряда в процессе эксплуатации. Конечно, существуют различные технологии исполнения аккумуляторов, в зависимости от которых сильно различается количество «жизненных» циклов при той или иной степени разряда, но это уже тема для отдельной статьи. Что касается солнечных батарей, то это уже рентабельный на сегодня источник энергии, и, после срока окупаемости, они еще годами могут вырабатывать так необходимое нам электричество. Что касается незначительной потери номинальной мощности за период в 20-25 лет, то это уже доказанный факт, и в качестве одного из примеров можно привести солнечную энергосистему с использованием модулей Kyocera мощностью 945 Вт, установленную в г. Лион, Франция – результаты лабораторных исследований показали, что за 20 лет эксплуатации потеря мощности составила всего 8,3%.


Те, у кого уже подведена электрическая сеть, конечно, не нуждаются в полностью автономной системе электроснабжения – можно задуматься либо о резервной системе электроснабжения, которая бы «подхватывала» нагрузку во время перебоев или в случае пропажи сети, либо о сетевой фотоэлектрической или гибридной (вкупе с ветрогенераторами) системе, работающей параллельно с сетью. В последнем случае возможны 2 варианта: сетевая система без аккумуляторов – вы просто экономите на счетах за электроэнергию, и резервно-сетевая система с аккумуляторами – кроме экономии на коммунальных платежах, вы еще и обеспечиваете себя резервом электроэнергии в аварийных случаях.


Дополнительно в случае сетевой системы излишки генерируемой «зеленой» энергии можно отдавать обратно в сеть, и, более того, в случае, если договоритесь с энергетиками, даже продавать. На практике, к сожалению, данный механизм пока не работает из-за отсутствия продуманной нормативной законодательной базы. Тем не менее, государство наконец начинает брать ситуацию под свой контроль и сейчас разрабатывается комплекс мер по поддержке возобновляемых источников энергии. При этом возможны различные варианты – например, покупка «зеленой» энергии на оптовом рынке. Также с 2014 года почти всех юрлиц, как крупных промышленных потребителей, так и малый и средний бизнес, обяжут, помимо обычной, покупать «зеленую» электроэнергию. В 2014 году это будет 0,1% всей покупаемой организацией мощности, в 2015-м — 0,2% и т.д., до 4,5% в 2020 году. Исключением будут только некоторые категории предприятий, получающих субсидии. Населения новые правила не коснутся. Конечно, всех этих мер мало для взрывного роста «зеленых» технологий, но отрадно, что за развитие данной отрасли взялись на государственном уровне. Боюсь только, что о результатах данной кипучей деятельности можно будет судить не ранее чем лет через 5-10. А пока что мы, рядовые граждане, должны сами позаботиться о своей энергетической независимости, и на фоне растущих тарифов на электроэнергию это отнюдь не пафосное заявление, а требование, продиктованное сложившимися реалиями рыночной конъюнктуры. Бесспорно, это недешевое удовольствие, и начинать здесь можно с малого – например, с замены обычных ламп на экономичные светодиодные, о преимуществах которых мы поговорим в одной из следующих статей.